3.1.34 \(\int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)} (c+c \sin (e+f x))} \, dx\) [34]

3.1.34.1 Optimal result
3.1.34.2 Mathematica [C] (warning: unable to verify)
3.1.34.3 Rubi [A] (verified)
3.1.34.4 Maple [B] (warning: unable to verify)
3.1.34.5 Fricas [F]
3.1.34.6 Sympy [F]
3.1.34.7 Maxima [F]
3.1.34.8 Giac [F]
3.1.34.9 Mupad [F(-1)]

3.1.34.1 Optimal result

Integrand size = 39, antiderivative size = 256 \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)} (c+c \sin (e+f x))} \, dx=-\frac {E\left (\arcsin \left (\frac {\cos (e+f x)}{1+\sin (e+f x)}\right )|-\frac {a-b}{a+b}\right ) \sqrt {\frac {\sin (e+f x)}{1+\sin (e+f x)}} \sqrt {a+b \sin (e+f x)}}{(a-b) c f \sqrt {g \sin (e+f x)} \sqrt {\frac {a+b \sin (e+f x)}{(a+b) (1+\sin (e+f x))}}}+\frac {2 b \sqrt {a+b} \sqrt {\frac {a (1-\csc (e+f x))}{a+b}} \sqrt {\frac {a (1+\csc (e+f x))}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {g} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {g \sin (e+f x)}}\right ),-\frac {a+b}{a-b}\right ) \tan (e+f x)}{a (a-b) c f \sqrt {g}} \]

output
-EllipticE(cos(f*x+e)/(1+sin(f*x+e)),((-a+b)/(a+b))^(1/2))*(sin(f*x+e)/(1+ 
sin(f*x+e)))^(1/2)*(a+b*sin(f*x+e))^(1/2)/(a-b)/c/f/(g*sin(f*x+e))^(1/2)/( 
(a+b*sin(f*x+e))/(a+b)/(1+sin(f*x+e)))^(1/2)+2*b*EllipticF(g^(1/2)*(a+b*si 
n(f*x+e))^(1/2)/(a+b)^(1/2)/(g*sin(f*x+e))^(1/2),((-a-b)/(a-b))^(1/2))*(a+ 
b)^(1/2)*(a*(1-csc(f*x+e))/(a+b))^(1/2)*(a*(1+csc(f*x+e))/(a-b))^(1/2)*tan 
(f*x+e)/a/(a-b)/c/f/g^(1/2)
 
3.1.34.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 19.75 (sec) , antiderivative size = 1667, normalized size of antiderivative = 6.51 \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)} (c+c \sin (e+f x))} \, dx =\text {Too large to display} \]

input
Integrate[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]*(c + c*Sin[e + 
f*x])),x]
 
output
(-2*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sin[e + f*x]*Sq 
rt[a + b*Sin[e + f*x]])/((a - b)*f*Sqrt[g*Sin[e + f*x]]*(c + c*Sin[e + f*x 
])) + ((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2*Sqrt[Sin[e + f*x]]*((4*a*(a 
 - b)*Sqrt[((a + b)*Cot[(-e + Pi/2 - f*x)/2]^2)/(-a + b)]*EllipticF[ArcSin 
[Sqrt[(Csc[(-e + Pi/2 - f*x)/2]^2*(a + b*Sin[e + f*x]))/a]/Sqrt[2]], (-2*a 
)/(-a + b)]*Sec[e + f*x]*Sin[(-e + Pi/2 - f*x)/2]^4*Sqrt[-(((a + b)*Csc[(- 
e + Pi/2 - f*x)/2]^2*Sin[e + f*x])/a)]*Sqrt[(Csc[(-e + Pi/2 - f*x)/2]^2*(a 
 + b*Sin[e + f*x]))/a])/((a + b)*Sqrt[Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x 
]]) + (2*a*ArcTanh[(Sqrt[b]*Sqrt[Sin[e + f*x]])/Sqrt[a + b*Sin[e + f*x]]]* 
Cos[e + f*x]^2)/(Sqrt[b]*(1 - Sin[e + f*x]^2)) + 4*a^2*((Sqrt[((a + b)*Cot 
[(-e + Pi/2 - f*x)/2]^2)/(-a + b)]*EllipticF[ArcSin[Sqrt[(Csc[(-e + Pi/2 - 
 f*x)/2]^2*(a + b*Sin[e + f*x]))/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sec[e + f*x 
]*Sin[(-e + Pi/2 - f*x)/2]^4*Sqrt[-(((a + b)*Csc[(-e + Pi/2 - f*x)/2]^2*Si 
n[e + f*x])/a)]*Sqrt[(Csc[(-e + Pi/2 - f*x)/2]^2*(a + b*Sin[e + f*x]))/a]) 
/((a + b)*Sqrt[Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]) - (Sqrt[((a + b)*Co 
t[(-e + Pi/2 - f*x)/2]^2)/(-a + b)]*EllipticPi[-(a/b), ArcSin[Sqrt[(Csc[(- 
e + Pi/2 - f*x)/2]^2*(a + b*Sin[e + f*x]))/a]/Sqrt[2]], (-2*a)/(-a + b)]*S 
ec[e + f*x]*Sin[(-e + Pi/2 - f*x)/2]^4*Sqrt[-(((a + b)*Csc[(-e + Pi/2 - f* 
x)/2]^2*Sin[e + f*x])/a)]*Sqrt[(Csc[(-e + Pi/2 - f*x)/2]^2*(a + b*Sin[e + 
f*x]))/a])/(b*Sqrt[Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]])) - 2*b*((Cos...
 
3.1.34.3 Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {3042, 3417, 3042, 3295, 3411}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(c \sin (e+f x)+c) \sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(c \sin (e+f x)+c) \sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)}}dx\)

\(\Big \downarrow \) 3417

\(\displaystyle \frac {\int \frac {\sqrt {a+b \sin (e+f x)}}{\sqrt {g \sin (e+f x)} (\sin (e+f x) c+c)}dx}{a-b}-\frac {b \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)}}dx}{c (a-b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {a+b \sin (e+f x)}}{\sqrt {g \sin (e+f x)} (\sin (e+f x) c+c)}dx}{a-b}-\frac {b \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)}}dx}{c (a-b)}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {\int \frac {\sqrt {a+b \sin (e+f x)}}{\sqrt {g \sin (e+f x)} (\sin (e+f x) c+c)}dx}{a-b}+\frac {2 b \sqrt {a+b} \tan (e+f x) \sqrt {\frac {a (1-\csc (e+f x))}{a+b}} \sqrt {\frac {a (\csc (e+f x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {g} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {g \sin (e+f x)}}\right ),-\frac {a+b}{a-b}\right )}{a c f \sqrt {g} (a-b)}\)

\(\Big \downarrow \) 3411

\(\displaystyle \frac {2 b \sqrt {a+b} \tan (e+f x) \sqrt {\frac {a (1-\csc (e+f x))}{a+b}} \sqrt {\frac {a (\csc (e+f x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {g} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {g \sin (e+f x)}}\right ),-\frac {a+b}{a-b}\right )}{a c f \sqrt {g} (a-b)}-\frac {\sqrt {\frac {\sin (e+f x)}{\sin (e+f x)+1}} \sqrt {a+b \sin (e+f x)} E\left (\arcsin \left (\frac {\cos (e+f x)}{\sin (e+f x)+1}\right )|-\frac {a-b}{a+b}\right )}{c f (a-b) \sqrt {g \sin (e+f x)} \sqrt {\frac {a+b \sin (e+f x)}{(a+b) (\sin (e+f x)+1)}}}\)

input
Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]*(c + c*Sin[e + f*x])) 
,x]
 
output
-((EllipticE[ArcSin[Cos[e + f*x]/(1 + Sin[e + f*x])], -((a - b)/(a + b))]* 
Sqrt[Sin[e + f*x]/(1 + Sin[e + f*x])]*Sqrt[a + b*Sin[e + f*x]])/((a - b)*c 
*f*Sqrt[g*Sin[e + f*x]]*Sqrt[(a + b*Sin[e + f*x])/((a + b)*(1 + Sin[e + f* 
x]))])) + (2*b*Sqrt[a + b]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 
 + Csc[e + f*x]))/(a - b)]*EllipticF[ArcSin[(Sqrt[g]*Sqrt[a + b*Sin[e + f* 
x]])/(Sqrt[a + b]*Sqrt[g*Sin[e + f*x]])], -((a + b)/(a - b))]*Tan[e + f*x] 
)/(a*(a - b)*c*f*Sqrt[g])
 

3.1.34.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3411
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[(g_.)*sin[(e_.) + (f_. 
)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(-Sqrt[ 
a + b*Sin[e + f*x]])*(Sqrt[d*(Sin[e + f*x]/(c + d*Sin[e + f*x]))]/(d*f*Sqrt 
[g*Sin[e + f*x]]*Sqrt[c^2*((a + b*Sin[e + f*x])/((a*c + b*d)*(c + d*Sin[e + 
 f*x])))]))*EllipticE[ArcSin[c*(Cos[e + f*x]/(c + d*Sin[e + f*x]))], (b*c - 
 a*d)/(b*c + a*d)], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 
 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
 

rule 3417
Int[1/(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[b/(b* 
c - a*d)   Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x], x] - 
Simp[d/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[g*Sin[e + f*x]]*(c 
+ d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - 
a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
 
3.1.34.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(3937\) vs. \(2(236)=472\).

Time = 2.61 (sec) , antiderivative size = 3938, normalized size of antiderivative = 15.38

method result size
default \(\text {Expression too large to display}\) \(3938\)

input
int(1/(c+c*sin(f*x+e))/(g*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e))^(1/2),x,metho 
d=_RETURNVERBOSE)
 
output
1/2/c/f/(g/((1-cos(f*x+e))^2*csc(f*x+e)^2+1)*(csc(f*x+e)-cot(f*x+e)))^(1/2 
)*((a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(csc(f*x+e)-cot(f*x+e))+a)/((1-cos 
(f*x+e))^2*csc(f*x+e)^2+1))^(1/2)*((1/(b+(-a^2+b^2)^(1/2))*(a*(csc(f*x+e)- 
cot(f*x+e))+(-a^2+b^2)^(1/2)+b))^(1/2)*(1/(-a^2+b^2)^(1/2)*(-a*(csc(f*x+e) 
-cot(f*x+e))+(-a^2+b^2)^(1/2)-b))^(1/2)*(-a/(b+(-a^2+b^2)^(1/2))*(csc(f*x+ 
e)-cot(f*x+e)))^(1/2)*EllipticF((1/(b+(-a^2+b^2)^(1/2))*(a*(csc(f*x+e)-cot 
(f*x+e))+(-a^2+b^2)^(1/2)+b))^(1/2),1/2*2^(1/2)*((b+(-a^2+b^2)^(1/2))/(-a^ 
2+b^2)^(1/2))^(1/2))*(-a^2+b^2)^(1/2)*2^(1/2)*a*(csc(f*x+e)-cot(f*x+e))-2* 
2^(1/2)*(-a^2+b^2)^(1/2)*(1/(b+(-a^2+b^2)^(1/2))*(a*(csc(f*x+e)-cot(f*x+e) 
)+(-a^2+b^2)^(1/2)+b))^(1/2)*(1/(-a^2+b^2)^(1/2)*(-a*(csc(f*x+e)-cot(f*x+e 
))+(-a^2+b^2)^(1/2)-b))^(1/2)*(-a/(b+(-a^2+b^2)^(1/2))*(csc(f*x+e)-cot(f*x 
+e)))^(1/2)*EllipticF((1/(b+(-a^2+b^2)^(1/2))*(a*(csc(f*x+e)-cot(f*x+e))+( 
-a^2+b^2)^(1/2)+b))^(1/2),1/2*2^(1/2)*((b+(-a^2+b^2)^(1/2))/(-a^2+b^2)^(1/ 
2))^(1/2))*b*(csc(f*x+e)-cot(f*x+e))+2*(1/(b+(-a^2+b^2)^(1/2))*(a*(csc(f*x 
+e)-cot(f*x+e))+(-a^2+b^2)^(1/2)+b))^(1/2)*(1/(-a^2+b^2)^(1/2)*(-a*(csc(f* 
x+e)-cot(f*x+e))+(-a^2+b^2)^(1/2)-b))^(1/2)*(-a/(b+(-a^2+b^2)^(1/2))*(csc( 
f*x+e)-cot(f*x+e)))^(1/2)*EllipticE((1/(b+(-a^2+b^2)^(1/2))*(a*(csc(f*x+e) 
-cot(f*x+e))+(-a^2+b^2)^(1/2)+b))^(1/2),1/2*2^(1/2)*((b+(-a^2+b^2)^(1/2))/ 
(-a^2+b^2)^(1/2))^(1/2))*(-a^2+b^2)^(1/2)*2^(1/2)*b*(csc(f*x+e)-cot(f*x+e) 
)+(1/(b+(-a^2+b^2)^(1/2))*(a*(csc(f*x+e)-cot(f*x+e))+(-a^2+b^2)^(1/2)+b...
 
3.1.34.5 Fricas [F]

\[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)} (c+c \sin (e+f x))} \, dx=\int { \frac {1}{\sqrt {b \sin \left (f x + e\right ) + a} {\left (c \sin \left (f x + e\right ) + c\right )} \sqrt {g \sin \left (f x + e\right )}} \,d x } \]

input
integrate(1/(c+c*sin(f*x+e))/(g*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e))^(1/2),x 
, algorithm="fricas")
 
output
integral(-sqrt(b*sin(f*x + e) + a)*sqrt(g*sin(f*x + e))/((a + b)*c*g*cos(f 
*x + e)^2 - (a + b)*c*g + (b*c*g*cos(f*x + e)^2 - (a + b)*c*g)*sin(f*x + e 
)), x)
 
3.1.34.6 Sympy [F]

\[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)} (c+c \sin (e+f x))} \, dx=\frac {\int \frac {1}{\sqrt {g \sin {\left (e + f x \right )}} \sqrt {a + b \sin {\left (e + f x \right )}} \sin {\left (e + f x \right )} + \sqrt {g \sin {\left (e + f x \right )}} \sqrt {a + b \sin {\left (e + f x \right )}}}\, dx}{c} \]

input
integrate(1/(c+c*sin(f*x+e))/(g*sin(f*x+e))**(1/2)/(a+b*sin(f*x+e))**(1/2) 
,x)
 
output
Integral(1/(sqrt(g*sin(e + f*x))*sqrt(a + b*sin(e + f*x))*sin(e + f*x) + s 
qrt(g*sin(e + f*x))*sqrt(a + b*sin(e + f*x))), x)/c
 
3.1.34.7 Maxima [F]

\[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)} (c+c \sin (e+f x))} \, dx=\int { \frac {1}{\sqrt {b \sin \left (f x + e\right ) + a} {\left (c \sin \left (f x + e\right ) + c\right )} \sqrt {g \sin \left (f x + e\right )}} \,d x } \]

input
integrate(1/(c+c*sin(f*x+e))/(g*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e))^(1/2),x 
, algorithm="maxima")
 
output
integrate(1/(sqrt(b*sin(f*x + e) + a)*(c*sin(f*x + e) + c)*sqrt(g*sin(f*x 
+ e))), x)
 
3.1.34.8 Giac [F]

\[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)} (c+c \sin (e+f x))} \, dx=\int { \frac {1}{\sqrt {b \sin \left (f x + e\right ) + a} {\left (c \sin \left (f x + e\right ) + c\right )} \sqrt {g \sin \left (f x + e\right )}} \,d x } \]

input
integrate(1/(c+c*sin(f*x+e))/(g*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e))^(1/2),x 
, algorithm="giac")
 
output
integrate(1/(sqrt(b*sin(f*x + e) + a)*(c*sin(f*x + e) + c)*sqrt(g*sin(f*x 
+ e))), x)
 
3.1.34.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+b \sin (e+f x)} (c+c \sin (e+f x))} \, dx=\int \frac {1}{\sqrt {g\,\sin \left (e+f\,x\right )}\,\sqrt {a+b\,\sin \left (e+f\,x\right )}\,\left (c+c\,\sin \left (e+f\,x\right )\right )} \,d x \]

input
int(1/((g*sin(e + f*x))^(1/2)*(a + b*sin(e + f*x))^(1/2)*(c + c*sin(e + f* 
x))),x)
 
output
int(1/((g*sin(e + f*x))^(1/2)*(a + b*sin(e + f*x))^(1/2)*(c + c*sin(e + f* 
x))), x)